

ProFlow

Sliding Vane Meters DN 15-50 (½"-2")

Introduction

VAF Instruments ProFlow positive displacement sliding vane type liquid flowmeters are used in continuous metering applications of oil-like liquids, especially for accurate measurement of fuel oil consumption.

ProFlow flowmeters have a simple, rugged design. With only few almost frictionless moving internal parts there is hardly any wear in the flowmeter which safeguards a typical long lasting lifetime. ProFlow meters have no mechanical seals saving you from regular maintenance and possible leakage of process liquids into the environment. The flowmeter is driven by the process liquid which makes it suitable for distant locations without power supply.

The high accuracy of the flowmeter (down to 0.2% and repeatability 0.05%) is not influenced by process pressure or temperature, mechanical pipe strain or liquid turbulence and therefore straight inlet and outlet pipe pieces are not required.

Experience in flow measurement

In 1938 VAF Instruments started as a manufacturer of petrol delivery pumps. The flowmeters made by VAF for this pump already had to have the highest accuracy and had to meet the demands of the board of weights and measures. Innovation and research over the past 75 years helped VAF to make new types of flowmeters bearing in mind customer requirements and the need for accurate flow measurement. VAF Instruments flowmeters are available in sizes from 8 mm up to 300 mm (1 I/hr up to 960 m³/hr). ProFlow flowmeters cover the middle part of this range.

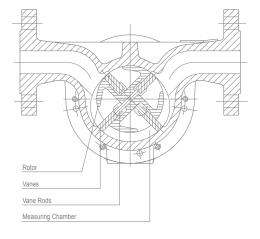
Available ProFlow flowmeters

ProFlow flowmeters are available in connection sizes from 15 mm up to 50 mm representing maximum flow ranges from 50 I/min up to 500 I/min. For registration of the measured amount of liquid VAF ProFlow meters can be fitted with digital totalisers with or without pulse transmitter.

ehinni I

ProFlow flowmeters are specially developed for measurement of all kinds of hydrocarbon liquids, in particular medium and heavy fuel oils for combustion engines, lubricating oils and many other oil-like liquids.

Special versions


This brochure comprises only VAF Instruments standard delivery program. Special flowmeter executions can be offered as tailor-made solutions.

Consult VAF Instruments for further information.

Principle of operation

ProFlow flowmeters operate on the sliding vane principle. The meter consists of a specially shaped housing in which a rotor can rotate freely. Two pairs of vanes are placed into four slots in the rotor. Each pair is positioned by a rod and can move in and out of the rotor. The radial vane movement is guided by the special inner shape of the housing. This patented construction provides a constant seal between the inlet and the outlet of the meter.

The incoming liquid forces the rotor to rotate. An internal magnet transmits the rotor rotations from the measuring chamber to a built-on electronic counter (standard). An electric pulse output can be installed as option for remote totalising or flow data processing.

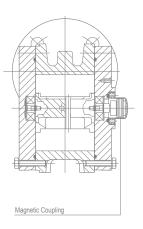
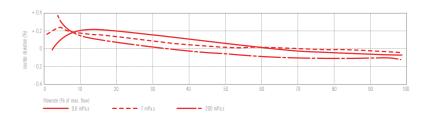


Fig. 1 Sectional view

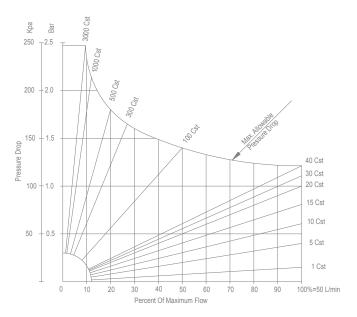
Features & benefits


Features	Benefits				
	One meter for a wide range of flows				
High capacity and rangebility	Superior turn down ratio				
	Lower investment				
High accuracy (days to 1.0.90/)	Exact registration of transferred amount of liquid				
High accuracy (down to \pm 0.2%)	No loss of valuable raw material				
	Easy to service				
Design simplicity	No complex replacement parts				
	Low operation cost				
	Easy to operate because no need for external settings saving time				
Accuracy not degraded by: process pressure / process temperature / liquid	in operation and training				
viscosity / liquid conductivity / pipe strain / flow pattern (turbulence)	One single meter model is suitable for different liquids resulting in a lower investment				
	No straight pipe required before or behind meter thus and less space required				
Our contributor	Easy to integrate in compact systems				
Compact design	Space saving				
Constructed to CE standards	No special adjustments necessary				
ISO 9001 registered company	Assured product quality				
	Less wear				
Few internal parts	Long lifetime				
	Low operation cost				
	No auxillary power needed				
Measurement driven by liquid	Low pressure drop				
	Suitable for many remote locations				

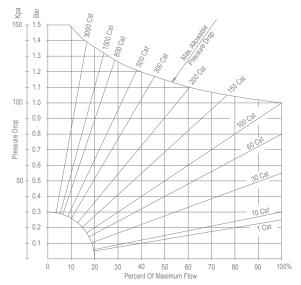
Technical specification

Typical calibration curves

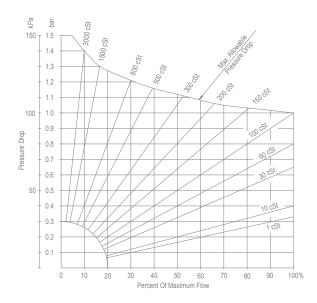
VAF Instruments flowmeters perform liquid measurement with the highest accuracy. This graph shows typical calibration curves for liquids with different viscosities. Consult the factory for other values.



J5015E	J5023E	J5025E	J5040E	J5050E	
15 mm (1/2")	25 mm (1")	25 mm (1")	40 mm (1.5")	50 mm (2")	
see graphs					
50	50	160	250	500	
37,5	37,5	120	187,5	375	
0,025	0,025	0,167	0,167	0,40	
0,2 %					
0,3 %					
better than ± 0,05	%				
3 (0,03)	3 (0,03)				
ductile iron	ductile iron				
carbon					
viton A					
4000 (40)		2500 (25)			
6, 10, 16, 25, 40		6, 10, 16, 25			
150, 300		150, 300			
5, 10, 16, 20		5, 10, 16, 20			
-10°C to 125°C				-10°C to 125°C	
-10°C to 180°C				-10°C to 160°C	
7 digit resettable to	taliser			<u> </u>	
0,1 litre, 0,001 m ³		0,001 m ³		0,001 m ³	
1 scalable pulse ou	tput				
open collector NPN					
5	7	12	14	22	
	15 mm (1/2") see graphs 50 37,5 0,025 0,2 % 0,3 % better than ± 0,05 3 (0,03) ductile iron carbon viton A 4000 (40) 6, 10, 16, 25, 40 150, 300 5, 10, 16, 20 -10"C to 180"C 7 digit resettable to 0,1 litre, 0,001 m³ 1 scalable pulse ou	15 mm (1/2") 25 mm (1") see graphs 50 50 37.5 37.5 0.025 0.2 % 0.3 % better than ± 0,05 % 3 (0,03) ductile iron carbon viton A 4000 (40) 6, 10, 16, 25, 40 150, 300 5, 10, 16, 20 -10°C to 125°C -10°C to 180°C 7 digit resettable totaliser	15 mm (1/2") 25 mm (1") 25 mm (1") see graphs 50 50 160 37.5 37.5 120 0.025 0.025 0,167 0.2 % 0.3 % better than ± 0,05 % 3 (0.03) ductile iron carbon viton A 4000 (40) 2500 (25) 6, 10, 16, 25, 40 6, 10, 16, 25 150, 300 150, 300 5, 10, 16, 20 5, 10, 16, 20 -10°C to 125°C -10°C to 180°C 7 digit resettable totaliser 0,1 litre, 0,001 m³ 0,001 m³ 1 scalable pulse output	15 mm (1/2") 25 mm (1") 25 mm (1") 40 mm (1.5") see graphs 50 50 160 250 37,5 37,5 120 187,5 0,025 0,025 0,167 0,167 0,2 % 0,3 % better than ± 0,05 % 3 (0,03) ductile iron carbon viton A 4000 (40) 2500 (25) 6, 10, 16, 25, 40 6, 10, 16, 25 150, 300 150, 300 5, 10, 16, 20 5, 10, 16, 20 -10"C to 180"C 7 digit resettable totaliser 0,1 litre, 0,001 m³ 0,001 m³ 1 scalable pulse output	


Flow ranges

To select the appropriate meter size for your process the graphs must be used. The data in these graphs only refer to standard flowmeters used on Newtonian liquids. Consult VAF Instruments for viscosities higher than shown in the graphs. Lower minimum capacities are possible dependent on liquid viscosity and required measuring accuracy.


Flowrate - pressure drop viscosity relation

Models J5015E / J5023E: 100% = 50 I/min

Model J5025E: 100% = 160 l/minModel J5040E: 100% = 250 l/min

Model J5050E: 100% = 500 l/min

Options and accessories

Liquid filter

The process liquid must be clean and free from air, gas or dirt. Solid particles may cause excessive wear. It is recommended to install a liquid filter with a suitable mesh width. If necessary also install an air vent.

Electronic signal processing instrumentation

A complete range of electronic signal processing instrumentation is available.

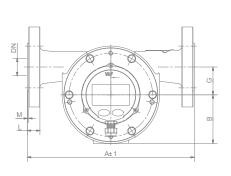
Built-on Totaliser

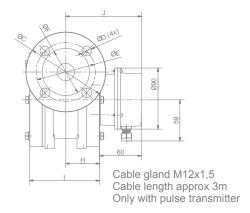
ProFlow flowmeters are equipped with a built-on totaliser. See tables for counter reading units and combinations of totaliser and pulse output.

Consult VAF Instruments for special counters and pulse transmitters not mentioned in this brochure.

Fig. 2 E-counter

Applications


- Fuel consumption measurement of internal combustion engines and oil burners;
- Injection of oils;
- Measurement of fluid movement in hydraulic systems;
- Accurate measurement of viscous fluids at low flow rates.


Dimensions

Dimensions apply to flowmeters with DIN flanges.

Dimensions of flowmeters with other pressure ratings are available on application.

All dimensions are in millimeters.

Meter type	Connection size	Α	В	G	Н	I	J
J5015E	DN 15 mm (1/2")	180	50	24	33	70	93
J5023E	DN 25 mm (1")	220	50	24	33	70	93
J5025E	DN 25 mm (1")	240	70	40	51	101	110
J5040E	DN 40 mm (1.5")	240	70	40	51	101	110
J5050E	DN 50 mm (2")	260	85	50	72	143	132

7

Quotation ϑ ordering information

	For proper selection of th	e suitable ProFlow meter th	ne following data should be d	etermined:	
	Liquid data:				
1.	Process liquid (trade na	ime or chemical compositio	n):		
2.	Flowrate [I/min] minimu	JM:	continuous:		maximum:
3.	Operating pressure ran	nge [bar]:	allowable pressure dr	op [bar]:	
4.	Operating temperature	range [°C] process liquid			ambient:
5.	Specific gravity at ope	rating conditions:			viscosity:
	Flowmeter data:				
6.	Basic model number:				
7.	Diameter liquid piping:				
8.	Connection flanges:	O DIN PN [bar]	○ ANSI RF [lbs]	○ JIS [K]	
9.	Direction to flow:	O left to right	oright to left	O top to bottom	O bottom to top
10.	Optional pulse transmit	ter (see technical specificat	ion table):		
		required	onot required		
		number of pulse/litre:			
11.	Liquid filter:	required	not required		
12.	Special certification:	o material certificate ac	cording EN 10204 3.1		
		ostandard factory accu	ıracy calibration certificate		
13.	Other options and acce	essories:			

Name:		
Place and date		

Represented by

VAF Instruments B.V.

Vierlinghstraat 24, 3316 EL Dordrecht, The Netherlands P.O. Box 40, 3300 AA Dordrecht, The Netherlands T +31 (0) 78 618 3100, F +31 (0) 78 617 7068 sales@vaf.nl, www.vaf.nl

Specifications subject to change without notice.

Agents and distributors in more than 50 countries.

